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Summary. A growing repertoire of electronic structure methods employ the 
spatial dimension D as an interpolation or scaling parameter. It is advantageous 
to transform the Schr6dinger equation to remove all dependence on D from the 
Jacobian volume element and the Laplacian operator; this introduces a centri- 
fugal term, quadratic in D, that augments the effective potential. Here we 
explicitly formulate this procedure for S states of an arbitrary many-particle 
system, in two variants. One version reduces the Laplacian to a quasicartesian 
form, and is particularly suited to evaluating the exactly solvable D-~ Go limit 
and perturbation expansions about this limit. The other version casts the 
Jacobian and Laplacian into the familiar forms for D--3 ,  and is particu- 
larly suited to calculations employing conventional Rayleigh-Ritz variational 
methods. 

Key words: Dimensional scaling- Quantum theory-  Schr6dinger equation- 
Many-body problem 

1. Introduction 

During the past few years, application of dimensional scaling to the quantum 
theory of atomic and molecular structure has yielded new computational meth- 
ods and conceptual insights [1-5]. This new approach requires solving the 
many-particle Schr6dinger equation in a D-dimensional coordinate space. Since 
all vectors are endowed with D cartesian components, the Laplacian operator 
and the Jacobian volume element are modified, but the potential energy retains 
the same form as for D = 3. Exact solutions can be found in the D ~ ~ limit, 
regardless of the number of electrons. This limit can be related to the physical 
dimension, D = 3, by using a perturbation expansion in terms of l/D, or by 
other means. Exact solutions can also be obtained at D ~ 1 for two-electron 
systems. This permits interpolation between the dimensional limits; e.g., to a very 
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good approximation the correlation energy is just a linear function of lID for the 
ground states of two-electron atoms [2]. 

When taking D as variable, it is expedient to transform the many-particle 
Schr6dinger equation to remove the D dependence from the Jacobian J and the 
Laplacian operator. This amounts to setting ~ = J-U2(9 and solving, not for the 
wavefunction ~, but rather for ~b, the square root of the distribution function. 
Such a transformation gives rise to a centrifugal potential, U, which contains the 
explicit D dependence, simply a quadratic factor. On introducing hydrogenic 
dimension-scaled units, U and the Coulombic potential V become independent of 
D, whereas the remaining kinetic energy terms scale as I/D 2. Thus, as D becomes 
large, the kinetic energy terms are suppressed, and the distribution function of 
the system is sharply localized at the minimum of the total effective potential, 
U + V. At this point, referred to as the Lewis structure, the particles all assume 
fixed positions in the scaled coordinates. Expansion of the potential about the 
Lewis structure yields a normal mode problem for harmonic vibrations of the 
particles, which are referred to as the Langmuir vibrations. For smaller values of 
D, the expansion gives a systematic method for constructing solutions to 
arbitrary order in lID. The procedure provides a convenient and intuitively 
appealing way to treat both electronic correlation and corrections to the Born- 
Oppenheimer approximation. 

In this paper, we refine and extend the method previously used by Loeser [4] 
to simplify the Schr6dinger equation for N particles in D dimensions and to 
evaluate the centrifugal potential. Our chief result is a new variant that permits 
dimensional scaling to be readily incorporated in conventional Rayleigh-Ritz 
variational calculations. In order to illustrate and motivate the main features in 
the simplest way, however, we first consider a two-electron atom with fixed 
nucleus in D space. After presenting the general case, we discuss some aspects of 
the Lewis structure and Langmuir vibrational modes, first for three particles and 
then for N particles. 

2. Two-electron atom in D dimensions 

The wavefunction for S states involves only three internal coordinates (for a 
fixed nucleus), usually taken as R~ and R2, the electron-nucleus radii, and 0, the 
included angle. In Hartree-Bohr atomic units, the Schr6dinger equation is: 

( --½A + V)~ = E~k, (2.1) 

with V the Coulombic potential. The Laplacian operator takes the form 
A = AR1 + AR2+ Ao, with: 

1 
ARe RiD- 1 OR i 

0 2 (D -- 1) 0 
- ~R~ + R ~  0R~' i = 1, 2 (2.2) 

and 

Ao = + zT0, (2.3a) 
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where 

z~0 - sinO_ 2 0 t~ 0 sinn-2 0 

= 80 ~ + (D - 2) cot 0 ~ .  (2.3b) 

Likewise, the radial and angular parts are separable in the Jacobian factor: 

J = JRJo = (R1R2) D-1 sin n -z  0. (2.4) 

It would be awkward to compare solutions for different D; since both ¢ and J 
depend on dimension. Hence we seek a transformation, ¢ = X~b, with the 
function Z~ chosen to simplify Aq~ and to render the Jacobian for ~b independent 
of D. Two physically motivated choices are apparent. (i) We can make the 
Jacobian for the ~b function become just unity by taking X = J-1/2, since then the 
distribution function Iq~ 12= J[ ¢ I 2 incorporates the full Jacobian. This choice has 
been used in most previous work [1] with D scaling. (ii) We can instead factor 
the Jacobian as J = J3JD-3 where: 

J3 = (RI R2) 2 sin 0, (2.5a) 

JD- 3 = (R1 R2 sin 0) D- 3, (2.5b) 

so J3 has the form familiar for D = 3. We may retain the J3 portion as the 
r-J/2 thereby tucking the D-depen- Jacobian for the ~b function by taking X = on-3 ,  

dent portion into [q~12 = JD-3 [~k 12, with the distribution function now given by 
s31 12--sl ,l 2. 

The radial and angular components of the transformed Laplacian have the 
form: 

824 B R dq5 CR 
z - IA ,  z(,b = A ,  ~-~-5 + ~ -  ~-/~ + ~ b  (2.6) 

and 

X-1ZoZC~ = A o - ~  + B o ~ + Co(a. (2.7) 

The resulting Schr6dinger equation for the ~b function is: 

(T + U + V)~b = Eq~, (2.8) 

where T = Tel + TR2 + To denotes the kinetic energy terms involving differential 
operators and U denotes the centrifugal potential, given by: 

1 fA 82 BR 0 ) 
TR= - - ~  , ~ 5 + ~ - ~ - ~  , (2.9) 

To = --~ + Ao -~5 + Bo , (2.10) 

and 

U = --~ + (CR + Co). (2.11) 
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Table 1 gives the coefficients that appear in Eqs. (2.6)-(2.11) ,  for both Cases (i) 
and (ii). The Jacobian for the q5 function, denoted J, is also shown; this is 
determined by J = Jixl 2. Table 2 givesthe corresponding centrifugal potentials. 
For Case (i), we note that T contains only second derivatives, and thus has 
simplified to a quasicartesian form, commensurate with the unit Jacobian for the 
q5 function. For Case (ii) the T operator also contains first derivatives but is 
identical in form to the Laplacian for D = 3, commensurate with J3 as the 
Jacobian for the q~ function. Furthermore, the difference between the Case (i) 
centrifugal potentials for general D is equal to the centrifugal potential for Case 
(ii): 

Uo(i) - U3(i) = Uo(ii). (2.12) 

In practice, Case (i) is particularly suited to evaluating the exactly solvable 
D - ~  oo limit and dimensional perturbation expansions about this limit [3, 5]. 
However, Case (ii) has a major advantage for calculations employing conven- 
tional variational methods. Since the Schr6dinger equation for Case (ii) is 
precisely the same as for D = 3, except for the addition of  the scalar U term, any 

Table 1. Laplacian components and Jacobian factors for two-electron atom 

Radius, R: An Be CR ]R 

2R c~z . .  R cG)~ R 2 632X 
ZR 1 (D -- 1) + - -  (D + - -  

z eR - l j ~  x ~R 2 
R " 1 (D - 1 -- 2c 0 - e(D - 2 - e) 

(i) ~=½(D-1, 1 0 - ( ~ - - D ( ~  -~) 
( D - a ~ ( D - I ~  

(ii) e = ½ ( D - - 3 )  1 2 - \ ~ - )  \ - - - ~ )  

R D- 1-2~ 

1 

R 2 

Angle, 0: Ao Bo Co Jo 

2 a Z cot 0 ~)~ 1 (~2)~ 
Z0 1 (D -- 2) cot 0 + - (D -- 2) z~g z ~ + z o 0  2 
(sin 0) -e 1 (D - 2 - 2[7) cot 0 /7[(D - 2 - 17) - (D - 3 - / 7 )  csc 20] 

(ii) /7 =½,D - 3) 1 c o t 0  ( ~ - ~ ) / ( ~ - ~ x ]  - ( ~ - ~ ]  c sc20]  
\ Z l L k Z /  \ z /  A 

(sin 0) ° -2  2fl 

1 

sin 0 

cosine, ?: A 7 B.; C;, ~, 

r - ' ~  

(iii) fl =½(D - 1) 

(ii) fl = ½(D - 3) 

F - - ( D - 1 ) 7 + 2  --F c~)~ 
Z 07 

V - - (D  -- 1 -- 2,8)7 

F 0 

F - 2 7  

- ( D - 1 ) - 7 ¢ 3 X  Fc32Z 

f l [ ( D _ 2 _ f l ) _ ( D _ 3 _ f l ) c s c 2 0 ]  F½(o 3)-t~ 

- t T j c s c  o / r-, 
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Table 2. Centrifugal potential for two-electron atom 

2 ~ + ~ 2  FD(c~'fl;O) 

(i) c~ =½(O - 1), 13=½(O -2)  4 q- csc 20 

(ii) c~= ]~=½(D-3) (~@)2csc20 

existing computer code can be generalized to D dimensions simply by adding the 
matrix elements for the centrifugal potential. 

The choice of internal coordinates also has a major role. To illustrate this, we 
transform from the angle 0 to its cosine, 7 = cos 0. (For  many-electron atoms, 
Loeser [4] found cosines are a felicitous choice.) The angular Laplacian of  Eq. 
(2.3) is then replaced by: 

(?2 (? (2.13) L=r~ -(D-1)~0~ 
and the angular factor in the Jacobian of  Eq. (2.4) is replaced by: 

j~, = F(D- 3)/2, (2.14) 

where F = 1 - 72 = sin 2 0. Again there are two natural choices for the 7-depen- 
dent portion of the transformation function, both of the form L, = F-/~/2. The 
choice made by Loeser [4], here denoted Case (iii), takes/~ = ½(D - 1), in order 
to eliminate the first derivative term in T~, the transformed kinetic energy 
analogous to Eq. (2.10). Instead, we advocate Case (ii), with /~ = ½ ( D -  3), in 
order to exploit the simple correspondence with D = 3 results. Tables 1 and 2 
include the requisite formulas. Note that, for a given choice for the Z function, 
transforming from 0 to 7 does not alter the centrifugal potential but does change 
the Laplacian and the Jacobian. The Case (ii) policy is to choose ;g so that A and 
J for the q~ function have the D = 3 form for any choice of coordinates. This 
ensures that the D-dimensional Hamiltonian for q5 has the key property, 

HD(ii) = H3(ii) + Uo(ii). (2.15) 

This remarkably simple result will hold also for many-particle systems. 

3. Schriidinger equation for N particles in D dimensions 

We now consider S states for the general case of  N particles (i = 1, 2 . . . . .  N) 
with arbitrary masses mi and charges Zi. The coordinates can be divided into a 
set of  internal coordinates, X1, )(2 . . . . .  X~ (not necessarily orthogonal), and a set 
of external coordinates, X~+~, X~+ 2, . . . .  Xd (which include the Euler angles), 
where d = DN. As D --* 0% the external coordinates become infinitely numerous, 
while z, the number of internal coordinates, remains fixed. As none of  the 
particles is necessarily fixed, there are N position vectors, each with D cartesian 
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components: xi = (Xil , x i2 . . . . .  XiD ). The Schr6dinger equation is: 

- - i = l ~ m i A i  q- V O = E I / l ,  

where 

(3.1) 

and 

where 

~0 2x~ 
A~' = ~ (3.3) 

t = 1 ~X it 

8X~SX~ 
G~ v-- Z (3.4) 

t= 1 ~Xit ~Xit" 

The corresponding Jacobian J for the transformation to internal coordinates is 
given by: 

J = G 1/2, (3.5) 

where G is the determinant of a matrix with elements defined by: 

OXit ~Xit 
Gilzv ~ t = l  ~ X #  ~ X v "  ( 3 . 6 )  

This matrix is the inverse of that formed by Eq. (3.4). The Laplacian can be 
rewritten [6] as: 

Ai= ~ { [ J  -I ~ JG ~ q O  02 
,.,'=, ~ (  i )Jff-~ +G~"SX, SX~ }. (3.7) 

This relates the A~ coefficient to G~" and J and their derivatives. 
The transformation ~b = Z~b brings the Schr6dinger equation to the form Eq. 

(2.8), with the kinetic energy operator given by: 

T 
i = 1  ,u,v = I ,u=l  v = l  

and the centrifugal energy by: 

{ 
U : - -- + vY', G~"Z-' 8X--~X;J" (3.9) 

i = l  /~=1 

Following Loeser [4], we take as internal coordinates the radii R; and cosines 
?u defined by: 

D 
R ~ -  • x 2,, (3.10a) 

t = l  

82 
Ai = - 

t= l ~x2it 

is the Laplacian operator for the ith particle. Since the wavefunction, ~, for S 
states depends only on the internal coordinates, we express Ai in terms of the 
internal coordinates: 

± 
\ 0x~ 8X~ 0L  ' Iz=l v = l  
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and 

Then 

Vo = xi  " x f l R i R j .  (3.lOb) 

1 
Ai = AR, +-R~ A~.,, (3.11) 

where An, has the same form as Eq. (2.2), and: 
N N 02 N 0 

ziT, = Z Z (Tyk -- 707ik) (D -- 1) Z " (3.12) 
j # i k ~ i O]lij 07ik jv~ i 70 07ij 

The Jacobian is given by: 

J = JRJ~, = (Rl R 2 "  " R N )  D -  'F (D-N- ' ) / 2 ,  (3.13) 

where F is the Gramian determinant [7]: 

r-17ol. (3.14) 
This form for J can be obtained directly from Eq. (3.6) but can be more simply 
verified by comparing the first derivative terms in Eqs. (3.2), (3.7), and (3.11). In 
Appendix A we give some pertinent properties of the Gramian determinant and 
its derivatives. 

Radial and cosine factors in the transformation function are again separable, 
and we consider functions of the form: 

Z = ZR Zr = (R,  R2" • • R N )  - a r - / ~ / 2 ,  ( 3 . 1 5 )  

analogous to those of Table 1. For the radial part we readily find: 

02q~ (O - 1 - 2~) 0~b a(O - 2 - e) 
z-~AR'zq5 = ~ + Ri ORi RZ O. (3.16) 

This is the same result obtained in Table 1. The cosine part is more involved; we 
find: 

02~b 
~t  0ql) N 0(/) (D 1)s 7'J--07o - fl ~ Sic 

07o 07ik • • ks, 07ik 

(½fl + 1)S;' - S~"] qS, (3.17) 

N N 
)~-IAriZ(9 = E E (Tjk -- 7ijTik) - -  

j # i k c i  

+ - 1)s'i + 

with 
X ~F 

sic=r-'  Y, (Tj, - oTi ) , 
j # i ~Tij 

u OF 
Z j•i 7ij 070, 

N N OF OF 
3;=1"- -2  E E (~jk--T07ik)  

j~ i  k #i OYij OYik 

N N 02F 
Sti" = F-1 Z Z (Tjk - 707i~) 

j # i  k #i 070" 07ik 

The sums involving derivatives of F are evaluated in Appendix A. Finally, we 
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obtain general expressions for the kinetic energy, T = T R + T~,, with: 

T R = - -  ~ ~ + ( D - -  (3.18) 
i=l Ri ~-RI 

and 

T ~ , = - ~  1 [ N N 6 2 _2fl)v~ i ~ ]  i=l ~ Z Z (Yik --TijTik) (D - 1 7• (3.19) 
I_.]¢ik•i ~7U ~7ik ' " 

and the centrifugal energy: 

U =  1 , = , ~  ( ~ - f l ) ( D - 2 - ~ - f l ) + f i ( D - N - l - f l )  , (3.20) 

where F ~) is the principal minor formed by deleting from F the row and 
column corresponding to the ith particle. The Jacobian for the q~ function is 
given by: 

] =  jlzl= = ( R I R 2 . . .  R N ) D - , - 2 ~ F ( D - N - , - 2 ~ ) .  (3.21) 

By specifying the values of the exponents ~ and fl of the transformation 
function of  Eq. (3.15) we can now evaluate various cases corresponding to 
those of Tables 1 and 2. Results for U and ] are given in Table 3 for the 
three cases of  chief interest: (i) with ] reduced to unity; (ii) with T and ] cast 
in the same form as for D - - 3 ;  and (iii) with the transformation chosen to 
eliminate the first derivative terms from the kinetic energy. For (ii) and (iii) the 
exponents ~ and fl have the same values as for the two-particle system; those 
for (i) differ because we used y rather than 0 for the N-particle system. For 
both (ii) and (iii), or whenever ~ = fl, the centrifugal energy has a quite tidy 
form: 

U : 2 ,  (3.22) 
i= 1 m i R i  

in which only the D-dependent scale factor f differs. This generalizes the result 
first obtained by Loeser [4]; his derivation required (iii) and particles with 
equal mass. For Case (ii) the key result of Eq. (2.15) indeed holds for the 
N-particle Hamiltonian. 

Table 3. Centrifugal potential and Jacobian factors for N-particles 

Case FD(F) in U=½YFo(,,B;r)/m~g~ Y 
i 

1)2 
(i) •=½(D--1) ,  ' N - - I )  N D - N -  f l=5 (D - ~ - 1 + 2 - ( r . , / r )  1 

2 (lV~/r) F+A2-N) H R2 
k Z. / k  / i 

2 (F")/F) F-½N 
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4. The large D regime 

To examine the transformed Schr6dinger equation in the large-D limit we 
introduce scaled radii and energy: 

r , - R , / f  and e - r E ,  (4.1) 

where f is the factor, quadratic in D, that appears in the centrifugal potential of 
Eq. (3.22). Although the precise definition o f f  depends on the choice of the 

transformation function, in the limit D-~ ~ this becomes inconsequential be- 
cause f - ~  D2/4 in any case. We consider a Coulombic potential V, which scales 
as R-~, whereas both the kinetic energy T and centrifugal potential U scale as 
R -2. Accordingly, with the scaling adopted in Eq. (4.1), the scaled potentials 
V{rt, 70 } and U{r~, ~ij} become independent of D whereas the scaled T{r,  7iy } 
contains a factor of f - L  Hence the kinetic energy terms become progressively 
less and less important as D becomes large; in effect, the mass factors in the 
scaled T are inflated by a factor f. In the limit D + m only an effective 
potential W = U +  V survives. For our N-particle Coulombic system with 
arbitrary masses and charges: 

[ r,, z,z, l 
W =  L m2mir2F + L . (4.2) i= , r 2 _ 2rirj Tij ),/2] j=i+l (r~ + 

For D ~ ~ the scaled ground-state energy of a bound system becomes: 

E~ = W{~ i, ~0}, (4.3) 

where {ri, ~,j} denotes the values of the scaled radii and cosines at which the 
global minimum of W occurs. The geometrical configuration of the system at 
this minimum is called [1] the Lewis structure. For finite but large values of D 
we can expand W in a Taylor series about the global minimum, in the manner 
customary for molecular vibrations [8]. The leading term after the constant, E~, 
is quadratic in the displacements from the minimum and thus defines a normal 
mode problem. The small vibrations of the system about the global minimum 
for large D are called [1] the Langmuir Vibrations. 

In the large-D limit any of the variants considered for the transformation 
function of Eq. (3.15) is simply related to the Jacobian of (3.13) by X-~J-1/2 
Thus, in this limit, ~b represents the square root of the distribution function, 
]~12.... j]O ]2, which becomes sharply localized in the neighborhood of the Lewis 
structure [9]. As D decreases, the Langmuir vibrations about the Lewis struc- 
ture become anharmonic and rapidly grow in amplitude. Nevertheless, the 
harmonic oscillator wavefunctions pertaining to the large-D regime can be used 
to generate recursively the coefficients of a perturbation expansion [5] of q~ and 
E in powers of 1/D. 

Electronic structure calculations for atoms usually take the nucleus as fixed 
at the origin. This has also been done in previous applications of dimen- 
sional scaling, except in a treatment of the large-D limit for helium and helium 
dimuonic atoms by van der Merwe [10, 11]. In our general formulation none of 
the particles need be considered as fixed and the origin can be chosen arbi- 
trarily; the results should, of course, be independent of the position of the 
origin. 
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4.1. Three-particle LewL~ structures 

As a simple example we consider a three-particle system in which each particle 
may have a distinct mass and charge. Suppose we adopt cartesian axes such that: 

r I = ( a ,  O, C l ,  e 2 ,  c 3 , . . .  ) ,  

r2 = ( --a' ,  0, cl, c2, c3 . . . .  ), (4.4) 

r 3 = ( 0 ,  b, cj, c2, c3,. • • ), 

and define c 2 = ~ j  c). In Table 4 we give the corresponding expressions for the 
radii r i=(r i . r , - )  I/2, the interparticle distances, r,s=lr,-rjl, the cosines 
7ij = ri" rj/rirj, and other pertinent geometrical quantities, including the Gramian 
determinant F and its principal minors F ~°. The scaled centrifugal potential, 
U' = f - ~ U ,  thus is given by: 

1 [a'2-k-b 2 a 2 q - b  2 q - a ' ) 2 ~  
U ' -  + - -  t - (a  + 

2 ( a + a ' ) b  z L rnl m2 m3 3 
1 Ca a+a ) 

2(a +a ' ) c  2 \ m l  ~ " 

(4.5) 

The scaled Coulomb potential is given by: 

V' Z1Z2 Z2Z3 Z3ZI 
= - -  + + ( 4 . 6 )  a + a'  (a'2 + b'2) 1/2 (a2 71_ b2) 1/2" 

The global minimum of W = U ' +  V' occurs when c--* o% and in this limit: 

1 r~3 rgl + ri2 (4.7) 
U ' =  - - +  , 

8 ~  \ m  1 m 2  m 3 J  

where A is the area of the triangle formed by the three particles, A = (a + a')b/2. 
This result can be written in a more perspicuous form: 

u 1 
U ' =  ~ , (4.8) 

.= , 12mih~ 

in terms of the quantities hi - 2A/rjk. These specify the perpendicular distances 
from the three vertices of the triangle to the opposite sides or their extensions. 

Table 4. Geometrical quantities for three-particle system 

Quant i ty  i = 1,/j  = 12 i = 2, tj = 23 i = 3, tj = 31 

r i (a2 + c=) 1/2 (a'2 ~_ C 2) 1/2 (b2 ~_ C 2) 112 

r• a + a '  (a,2 + b 2) 1/2 (a 2 + b 2) 1/2 

Yij (c 2 - a' a)/(r I r2) c2/(r2r3) c2/(r3r! ) 
Fti) ta ,2b2 + r 2 C2-~//F2/,2~ 2 2 2 2 2 2 2 2 2 2 t 23 Jtt 2 3J (a b + r31c  ) / ( rsr  0 r12c [(r lr2)  

h i 2A/r2s 2A/ r  13 2A / r  12 
(a + a')2b2c 2 

F 2 2 2  r I r2r3 

A = ½(a + a')b = [s(s - r12)(s - r23)(s - r31 )]1/2 

S = ½(r12 -I- r23 q- r31 ) 
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Finally, we obtain the effective potential in a compact form: 

W= ~ + 2 ZiZ/ . (4.9) 
i=1 j = i + l  Fi j ,I 

This is independent of the location of the origin, as expected. Likewise, W is 
unchanged if the signs of all three nuclear charges are reversed. 

Table 5 gives the Lewis structures and energies E~ obtained by minimizing W 
for several three-particle systems. These include helium with the nucleus fixed 
(N = 2) and without the nucleus fixed (N = 3), and with one or both electrons 
replaced by #-  mesons. Also shown is an artificial hydride ion, with nuclear 
charge Z3 = 1.2, to illustrate the phenomenon of "symmetry breaking". Even for 
systems in which two of the particles are identical, the global minimum is not 
always a symmetrical Lewis structure [1, 12]. For a two-electron atom with 
Z ~> 2 the effective potential W has a,single minimum with isosceles symmetry, 
but as Z is reduced a pair of unsymmetrical local minima appear, and the 
isosceles configuration eventually develops into a saddle point [12]. Similarly, for 
the hydrogen molecule ion W has isosceles symmetry when the internuclear 
distance is small, but as it increases W develops a double minimum with the 
electron closer to one or the other nucleus [13]. 

The examples of Table 5 illustrate some recurrent features. Removing the 
approximation of a fixed nucleus causes the Lewis structure to expand slightly 
and to become slightly less stable; we show the percentage changes in parenthe- 
ses. For He, the energy E~ shifts upwards by ~0.015%. This result, from the very 
simple D ~ ~ limit, agrees extremely well with computations [ 14] of the effect of 
finite nuclear mass for D = 3, which find an energy shift of ~0.014% in the same 
direction. These effects are amplified for muonic atoms. When both electrons in 
helium are replaced by negative muons, the size of the atom shrinks, approxi- 
mately in the mass ratio m~/me ; however, when this factor is scaled out from 
both distance and energy, the changes are small; the scaled Lewis structure for 

Tab le  5. Lewis  s t ruc tu res  fo r  th ree -par t i c le  sys tems  

E.g. Z l / Z 2 / Z  3 ml/m2/m 3 F12//723/F31 •zc/(m2 Z2 ) 

- 1 m e 0 .8971494  - -0 .6844423  

( N  = 2) - 1 m e 0 .6069637 

+ 2  ~ 0 .6069637  

- 1 m e 0 .8972544  ( + 0 .012%) - 0 . 6 8 4 3 3 9 8  

( N  = 3) - 1 m e 0 .6070512  ( + 0 . 0 1 4 % )  ( - 0 . 0 1 5 % )  

+ 2  m~ 0 .6070512  ( + 0 . 0 1 4 % )  

ct#p - 1 m~ 0 .004443249  ( + 2.35%) - 0 .6639983 

- m~, 0 .003022489  ( + 2.87%) ( + 2 .99%) 

+ 2 m~ 0 .003022489  ( + 2.87%) 

ctk~e - -  1 m e 1.000127 ( + 0 .013%) --  0 .4868255 
--  1 m,, 0 .00248669  ( + 2 .87%) ( - - 2 . 8 3 % )  

+ 2  m~ 1.000124 ( + 0 . 0 1 2 % )  

" H - "  --  1 m e 3 .201014 ( + 0 . 1 6 % )  - - 0 . 5 1 7 5 7 6 2  

--  1 m e 0 .8520228 ( + 0 .045%) ( --  0 .056%) 
+ 1.2 mp 3 .040966 ( + 0 . 1 7 % )  

m~ = 1; m~,= 206.7686;  m r = 1836.154; m ~ =  7296.294  
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the dimuonic atom is less stable and more expanded than ordinary helium by 
about 2.9%. When one electron in helium is replaced by a negative muon, we 
find the Lewis structure minimum gives an energy ~ = -402.6409 hartrees, in 
excellent agreement with a 35-term variational calculation for D = 3, which 
obtained -402.641014 hartrees [15]. As shown in Appendix B, this close 
agreement arises from the large mass disparity between the electron and muon, 
which allows a very accurate hydrogenic approximation. 

4.2. Many-electron Langmuir vibrations 

The key question for dimensional scaling is how to connect the readily solvable 
D ~ oe limit to the physical problem at D = 3. Here we illustrate some aspects 
for a many-electron atom from the perspective of the 1/D perturbation expan- 
sion [1-5]. In this approach the scaled energy E =fE is evaluated as a power 
series: 

~O = ~ E~n)D-n" (4.10) 
n = 0  

In practice, it is expedient to derive the expansion in terms o f f  -1/2 and then 
recast the result to obtain the 1/D series. This corresponds to expanding the 
wavefunction as: 

~9= ~ ~)nf n/4. (4.11) 
n = l  

It is also useful to introduce vibrational coordinates xi and y,~ defined by: 

ri =f i (1  + f - 1 / 4 X i )  and 70" =70"-+' f - l /4yi j  • (4.12) 

These represent dimension-scaled displacements from the Lewis structure. If  we 
then expand all terms in the Schr6dinger equation to order f-1/z, we obtain 
[3, 16] an eigenvalue equation for E (1), the first-order perturbation coefficient: 

[T{xi, y~ } + Wz {xi, y0.}]~b0 = e(l~b0. (4.13) 

Here W2 is a quadratic function of the vibrational displacements. Both T and W2 
have the same form for each of the three Cases of Tables 1-3, and Eq. (4.13) has 
the standard form for a system of coupled harmonic oscillators, which is separable 
in terms of normal coordinates. Thus, e ~) can be determined from the normal 
mode frequencies and the corresponding Langmuir vibrational modes can be 
obtained from the normal coordinate transformation by means of the FG matrix 
method [8]. The higher order perturbation coefficients e (") can then be calculated 
from a recursive algorithm [5, 17]. The energy expansion of Eq. (4.10) is in general 
a divergent asymptotic series, but summation techniques can give very accurate 
results [5]. The method appears feasible for many-electron atoms and molecules. 

If  the energy expansion is simply truncated at first order and then augmented 
by an appropriate summation procedure, then the results for the N-electron 
atom are comparable in accuracy to a Hartree-Fock calculation [4]. However, 
the qualitative picture of harmonic Langmuir vibrations that the first-order 
expansion represents is an entirely different model from the independent particle 
scheme invoked for the Hartree-Fock approximation. The large-D Iimit explic- 
itly displays collective strongly correlated motions of all the particles, whereas 
the Hartree-Fock approximation averages over these collective motions in order 
to weaken the correlations. 
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The form of the Langmuir vibrations offers insight into the particle correla- 
tions even at D = 3. The vibrational normal modes correspond to approximate 
symmetries of the Hamiltonian that become exact in the D ~ oe limit. To 
illustrate this, we consider an N-electron atom with fixed nucleus. Loeser [4] has 
shown that the Lewis structure for a neutral atom with Z < 15, or for any 
atomic cation, is an N-dimensional simplex specified by just two parameters: 

= r; and ~ = 7;j, for all i and j. The vibrations of the simplex can be described 
in terms of ~ = N(N + 1)/2 orthogonal normal coordinates. In general, there are 
five distinct normal modes, which belong to three different irreducible representa- 
tions of the point group of the simplex, the symmetric group SN. TWO nondegen- 
erate modes belong to the totally symmetric representation A1. The normal 
coordinates for these modes can be constructed [8] as linear combinations of 
symmetry-adapted internal coordinates, a symmetric stretch x and a symmetric 
bend y defined as: 

N 
x = N -1/2 ~ xi (4.14) 

i=1 

and 
N N 

y = [ N ( N -  1)/2]-1/2 Z ~ Y;J. (4.15) 
i = l j = i + l  

Since x and y can serve as a basis for the A~ representation, the harmonic 
portion of the effective potential can be written in the form: 

W2 = fxx x2 + 2fxyxy + fyyy2 + Wres,, (4.16) 

where Wres, is independent of x and y. If the coupling constant fxy is small 
compared to fx~ and fyy, as happens for two-electron atoms [3, 16], then x and 
y are approximate normal coordinates and the harmonic wavefunction is ap- 
proximately separable in terms of them. 

This situation is pertinent to a long-standing question associated with the 
"adiabatic approximation" often employed in applications of hyperspherical 
coordinates to atomic structure [18]. This assumes that the dependence of the 
wavefunction on the hyperspherical radius R is approximately separable, where: 

For two-electron atoms, computational evidence for this approximate separabil- 
ity was provided in 1968 by Macek [19]. The physical reason remained unclear, 
although it was later suggested that it is due to some unidentified hidden 
symmetry [20]. A recent analysis of the two-electron case [16] inferred that this 
hidden symmetry is in fact the point group of the Lewis structure. The argument 
is quite direct. Using Eq. (4.12), we expand the hyperspherical radius to first 
order in D -1/2. For the symmetric Lewis structure: 

R ~ 21/2?[1 + 2-1/2D-1/2(xl + X2) ] 

= 21/2~(1 + D -1/2x). ( 4 . 1 8 )  

Therefore, the approximate separability of the Langmuir vibrations in terms of 
the symmetric stretch x implies approximate separability in terms of R. Here we 
note that the second equality in Eq. (4.18) holds for arbitrary N. This suggests 
that the approximate separability with respect to R will obtain for any atom for 
which the Lewis structure is a simplex. 



14 J. Avery et al. 

5. Discussion 

Virtually all pragmatic electronic structure calculations for the "real world" with 
D = 3 employ the Rayleigh-Ritz variational method; a vast methodology has 
been built up and encoded for computers. Dimensional scaling treatments have 
so far used almost solely 1/D perturbation expansions, however, with the 
exception of a few calculations for two-electron atoms [21, 22]. The new version 
of the D dimensional Schr6dinger equation, designated here as Case (ii), 
facilitates combining D scaling with variational techniques and computer codes. 

In addition to augmenting the Hamiltonian with the centrifugal potential, 
according to (2.15), two further ingredients will be required. To exploit the 
opportunity to connect D = 3 results with the exactly solvable large-D regime, 
we need to use variational trial functions capable of simulating well the D 
dependence of the true wavefunction. In good part, means to implement this 
criterion will have to be explored empirically. We also need to find better scaling 
procedures. Without scaling, the addition of the D-dependent centrifugal poten- 
tial makes the electronic energy vanish as D ~ oe. The scaling transformation, in 
the form of Eq. (4.1), is equivalent to taking the ratio to a hydrogenic atom at 
the same D value; this renders the large-D limit finite and thereby permits 
dimensional interpolation. An ideal strategy would be to transform to some 
quantity that is independent or nearly independent of D. Again, the search for a 
generic D dependence that could be used to improve the scaling scheme will have 
to be pursued empirically. Use of variational methods will greatly aid this search. 

The generalized formulation developed in this paper may find other inviting 
applications in treatments that augment [23, 24], abandon [25], or seemingly 
invert [26] the Born-Oppenheimer approximation. Useful as it is, the traditional 
view that in molecules the nuclei are localized with a definite geometric structure 
is only a limiting case. With sufficient vibrational excitation, the molecular 
structure undergoes a "melting" transition [27], the definite geometry disappears, 
and the molecular point group is no longer valid for predicting degeneracies. In 
such straits, the only valid symmetry group is that intrinsic to the Hamiltonian, 
the Longuet-Higgens group [28]. Likewise, the traditional view of electrons as 
diffuse, structureless clouds is just a limiting case. Particularly in two-electron 
excited states, striking evidence of pseudomolecular behavior appears, in which 
the electrons exhibit collective rotational and vibrational modes [29-31]. Over a 
wide range, the interelectronic distance indeed can serve as an adiabatic coordi- 
nate, entirely analogous to the internuclear bond of a molecule [26]. These 
qualitative changes with the level of internal excitation are heuristically similar to 
the transition between hyperquantum and pseudoclassical character in scanning 
from the low-D to the high-D limit [1-3]. The Lewis structure and Langrnuir 
vibrations have indeed proven useful in interpreting collective modes of excited 
two-electron atoms [31]. Similar analysis can now be pursued for many-electron 
modes. 

Although electronic correlation has motivated our study of dimensional 
scaling, the general expressions obtained in Eqs. (3.18)-(3.22) for the kinetic 
energy, centrifugal potential, and Jacobian weighting function are applicable to 
the S states of any many-body Schr6dinger equation. 
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Appendix A: The Gramian determinant 

If  a set (i = 1, 2 , • • • ,  N) of unit vectors x~ in a Euclidean space is linearly 
dependent, then there exists a set of  numbers, not all of  which are zero, such 
that: 

Cl X 1 "~- C2X 2 "~- " " " ~- CNX N = O. (A1) 

Taking the scalar product of this equation with each of  the vectors in turn, we 
obtain the set of  equations: 

C l Y l l  -~- C 2 7 1 2  - ~  ' ' ' - ~  C N Y l N  = O, 

C1])21 + C2])22 "~- " " " At- CN~)2N = O, 
• (A2) 

£17N1  "~ C2~N2 q-  " " " ~-  ¢ N Y N N  = O, 

where yg --- x~. xj. The G r a m i a n  d e t e r m i n a n t  [7] is defined as: 

F - [y,j [ (A3) 

and Eqs. (A2) have a non-trivial solution for the c~ if r = o. Thus, the vectors are 
linearly dependent if and only if the Gramian determinant is zero• 

Here we derive properties of r required to evaluate Eq. (3.17) of  the text• Let 
Cu denote the cofactor of  the element 7u in F, that is, ( -- 1) ~+j multiplied by the 
determinant of the matrix obtained by deleting the ith row and the j t h  column. 
Then, expanding F in terms of  the cofactors, we obtain: 

N N 

P = ~ ,  y o C u  = Z y~Cj i ,  (A4) 
j = l  j = l  

so that 

0F 
ae,j + cji. (as )  

From these relations and from the fact that 7i~ = 1, it follows that: 

N 0F 
F - ½ E Y i : ~ .  = 7~,C;; = F (°, (A6) 

v r q  

where F <o = Ci,- is the ith principal minor of F. From the theory of  determinants, 
we also know that if k ~ i, then: 

N 

Z 7 0 C o  " = 0. (A7) 
j = l  

We can use Eqs. (A6) and (A7) to show that: 

u OF 
Y, (Tjk - 7o~ik) - 2 ~ u r ,  for 1 ~< i < j  ~< N. (A8) 

k ~  07;k 
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From Eq. (A6) it follows that: 
u OF N 0F 

(Tjk -- 707~k) ~ = 27~[ F") - F] + ~ 7jk , (A9) 
k ~ i  k ~ i  OYik 

while from Eqs. (A4) and (A7) we have: 
N 0F N 

k * i  ~ '  7j* --~Tik = 2 k ~  ~ ?j,C~k = - - 2 y o ' F  "). (A10) 

Combining these results yields the desired relation, Eq. (A8). 
We can now readily evaluate the four sums in Eq. (3.17) involving derivatives 

of F. The quantity denoted Sik is obtained directly from Eq. (A8); on relabeling 
the summation index, the term containing Sik is then incorporated into the 
coefficient of ~q5/c370. in the kinetic energy. Likewise, the quantity S'i is obtained 
from Eq. (A6), which yields: 

OF 
S'i - F -~ 7~ = 2  1 -  (A l l )  

j e i  ~ 

The quantity S~' is evaluated by successive application of Eqs. (A8) and (A6), 
which gives: 

N N 0F OF 
s'; = r -2 E E (Tj  - 

j # i  k # i  ~Yij  ~Tik  

- - - 2 r - '  E 2 s ' , = - 4  1 -  . (Al2) 

Finally, the quantity $ 7  can be recast as: 

N N 02F 

j ~ i k # i ~Tij  ~7 ik  

= - -  7 ~  7 1 k )  - -  - -  

and with Eqs. (A8) and (A6) this gives: 

k , i  ~ ( - -  2y,k F) + 7,~ ~ + Ya 
j # i  

= F -1 - 2 F  - 7ik + 2(F -- F (i)) 
k ~ i ~7~k 

= - 2  + (4 - 2 N )  (A14) 
F 

The Gramian determinant, F, and the principal minor, F "~, can be used to 
construct the projection of a vector x~ onto the  subspace S spanned by all the 
other vectors in the set. We illustrate this construction with an example: Suppose 
that N = 3 and we wish to construct the projection of x3 onto the subspace 
spanned by x~ and x2. Let x, be the projection onto S and x~ the component of 
x3 normal to S. Then we can write: 

X 3 = X n ÷ X s. (A15) 
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Let 

xs = a l x l  + a2x2.  (A16) 

Then the coefficients a, and a2 must simultaneously satisfy the three equations: 

- - X  s + a l x  t + a 2 x  2 = 0 ,  

11 " ( - -  X 3 -~- a l  X 1 -}- a2x2)  = 0, (A17) 

X 2 " ( - - X  3 ~-  a l x l  + a2x2)  = 0, 

which can be rewritten in the form: 

a t x  1 + a z X z  q - ( - - l ) x  s =0 ,  

al];11 q- a2712 Jr- ( - -  1)];13 = 0, (A18) 

a1712 + a2722 q- ( - -  1)713 = 0. 

This set of equations will have a solution, al, a2, ( - l), if and only if: 

Xl x2 xs 

];11 712 713 =0 .  (A19) 

712 ];22 ];23 

Expanding this determinant in terms of the cofactors of  the top row, we obtain: 

1 I1  x2 0 

X s - -  F(3) 711 712 ];13 , (A20) 

];12 ];22 723 

and 

Thus: 

l x 2  
Xn ~ X3 - -  Xs  ~ ~ ];12 

712 722 

x3 1 71l 

];23];13 =F(3~ ~ ;  

];12 ];13 

])22 ];23 

X2 X3 

(A21) 

x n " X n = X 3 • X n = F/F ¢3). (A22) 

More generally, even if the vectors xt, x2, x3 . . . . .  xN are not unit vectors, we 
still decompose the vector xi into a projection onto the subspace spanned by all 
the other vectors, and a component x. that is perpendicular to the subspace: 

xi  = G + x~. (A23) 

In the general case the square of the length of the perpendicular component is 
given by: 

xn" xn = R 2 F / F  C°, (A24) 

where R i is the length of the vector xi and F is the Gramian determinant formed 
from Y0 - xi" X j / R i R j "  
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Appendix B: Muonic helium atom 

When one electron in helium is replaced by a negative muon, the system can be 
well approximated as separable, since the heavier muon will reside much closer 
to the nucleus than will the electron. Here we exploit this feature to obtain a 
simple but very accurate approximation from the Lewis structure. The ground- 
state energy thus found for the D ~ oo limit proves to be in excellent agreement 
with that for D = 3 from extensive variational calculations [15]. From Eq. (4.9), 
the effective potential is 

z 
W = 8 ~  ~ + - - +  q - - (B1) 

m 2 c a b ' 

where the interparticle distances are denoted by a = r~u, b = r~e and c = r ~ e  , and 
Z = 2 is the nuclear charge. Since a ~ b, the correlation between the muon and 
electron motions will be weak. Accordingly, as in the D---, oo limit for a 
Har t r ee -Fock  wavefunction [16], the Jacobian factor will cause the limiting 
angle between the a and b vectors to be 90 °, so we take c 2 ~ a 2 + b 2. This gives: 

W = ~ + (B2) 
a b ' 

with Mu and Me the reduced masses of  the muon and electron, respectively, with 
respect to the nucleus, and with terms of order (a/b) 3 and higher omitted. Now 
W describes two separable, hydrogenic systems: one is the muon interacting with 
the bare nucleus (an alpha particle), the other the electron interacting with the 
dressed nucleus, quite effectively screened by the muon. From a W/Oa = 0 and 
O W]t3b = 0 we find the particle locations at the minimum: 

1 1 
a,,, = Z M ~  and b m - -  ( Z  - -  1)Me' (B3) 

and the energy: 

Ea¢ = ~Vm ~___ 1 2 - ~ Z  M ~ -  ½ ( Z -  1)2Me. (B4) 

Using the mass values cited in Table 5, we obtain: 

am = 0.002486691 (0.002418162), 

bm = 1.000137 (1.0), 
(B5) 

c m : 1.000140 (1.000003), 

Wm = --402.6409 (--414.0372), 

where the quantities in parentheses pertain to a fixed nucleus (m, = oo). 
Direct numerical minimization of Eq. (B1), without the approximations 

introduced in Eq. (B2), yields the same values of a m and Wm as found in Eq. (B5) 
to seven figures (the accuracy of the input masses). However, evaluation of b m and 
cm from direct numerical minimization [32] encounters an intrinsic difficulty. The 
values of  Wm and am are quite insensitive to bm and cm. As seen in Eq. (B4), the 
major b dependence contributes only ~0.1% to the value of Win. Also, the 
smallness of a m makes b,,, ~ Cm, as noted above. To resolve this difficulty, we 
evaluated b,, and c,, by minimizing W(a,n, b, c) instead of W(a, b, c) and obtained: 

bm ~" 1.000124 (1.0), (B6) 

Cm = 1.000127 (1.000003). 
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The corresponding angle between the muon and electron radii in the Lewis 
structure: 

Om 1 2 2 C2m)/ambm], (B7) = arccos[g(am + b,, - 

is 89.9965 °, very close to 90 °. This illustrates the weakness of  the muon-electron 
correlation, in contrast to the electron-electron correlation in ordinary helium, 
which has 0 m = 95.3 °. 

The value of Wm for the D ~ 0o Lewis structure of  Eq. (B5) is the same to 
six figures as the energy for D = 3 obtained from variational calculations [15]. 
This is a consequence of the feeble correlation in the muonic atom, which, as 
seen in Eq. (B4), renders it quasihydrogenic. In such a case, knowledge of  the 
D ~ ~ limit determines the energy at D = 3 as well, because the dimensional 
scaling procedure is designed to give exact results for hydrogenic atoms [3]. 
Likewise, the weakness of the muon-electron correlation is the reason the energy 
computed with a 1-term variational trial function (-402.641012) is nearly as 
good as that obtained with a 35-term function (-402.641014).  

The agreement between Wm from Eq. (B5) and the variational results can be 
shown analytically for the 1-term function. This consists of the product of ls 
orbitals, proportional to e x p ( -  (~r~) e x p ( -  ~er~e), with (u and (e the variational 
parameters. By expanding the expression obtained by Huang [ 15] for the energy 
expectation value, we find that it becomes the same as our Eq. (B2) if we neglect 
terms of order ((~/(e) 3, which are very small, and replace a with 1/(~ and b with 
1/( e. Thus, the minimization of W to obtain the D ~ ~ limit is practically 
equivalent to such a simple variational or Har t r ee -Fock  approximation for 
D = 3 as long as the correlation is very weak. This equivalence no longer holds 
when the correlation becomes strong. 
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